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Abstract

Given a set of data points and a distance function, the median point is defined as the point (in the set) that minimizes
the sum of the distances to the remaining points of the set. In the general case, the median computation has an O(n?)
time cost, where # is the number of points. Nevertheless, for most tasks an approximate median is enough. In this paper
a very fast algorithm (linear in time) is presented that finds a point that is a very good approximation of the exact
median. This algorithm is independent of the distance function and does not degrade as the dimensionality of the data
increases. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Given a set of n points P and a distance func-
tion, the median is defined as the point (in the set)
that minimizes the sum of the distances to the re-
maining points of the set. If points are real num-
bers and the distance function is the absolute value
of their difference, then this definition of median
reduces to the scalar median that is the one nor-
mally used in statistics (if the numbers are sorted
the median is the number that appears in the
middle of the list). There are several works in the
literature treating this special case, as the classical
Hoare (1961) “find” algorithm that has an O(n)
time complexity. The scalar median is widely used
in image processing as an edge-preserving impul-
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sive-noise reduction filter (Alvarez et al., 1992).
The basic idea is that pixel values are replaced by
the median of the pixels contained in a window
around it. Then the median computation is a
bottleneck for large images.

An extension of the previous case is the vector
median in which the points are real (or integer)
vectors and the distances are (usually) the L,
(Euclidean) and the L, (absolute value) distances.
The vector median is widely used in multiband
image processing tasks (Astola et al., 1990) as
color images or vector fields obtained by optic flow
computation (Bartolini et al., 1993). There are no
algorithms to solve this problem in lower than an
O(n?) time but there are some approximate algo-
rithms such as (Barni et al., 1995) whose emphasis
is in avoiding the calculation of the square root of
the Euclidean distance (then, the complexity re-
mains quadratic but they report a 50% time re-
duction) and Barni et al.’s (1992), based on the
idea that the calculation of the vector median
using L; is equivalent to calculating the scalar
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median componentwise. As this vector does not
necessarily belong to the original set its nearest
neighbor is proposed as the approximate vector
median. This algorithm works in linear time and is
clearly faster than our algorithm, but only works
with the L, distance.

In the general case, the points can represent
data structures such as strings and the distance
function can be any dissimilarity measure such as
the edit distance (or weighted Levenshtein dis-
tance) (Fu, 1982). Just in case the distance function
is a metric: d(x,y) =0 iff x =y, d(x,y) =d(y,x)
(symmetric), d(x,y) < d(x,z) + d(z,y) (triangle in-
equality), there are some algorithms based on
avoiding distance computations (Juan and Vidal,
1998; Juan, 1999) but have quadratic time and
space requirements. If the triangular inequality
does not hold but the distance is symmetric, the
only fast algorithm consists in avoiding to calcu-
late two times the same distance (d(x,y) and
d(y,x)). No approximate algorithm has seen re-
ported so far.

This general-case median is a well-known
technique for modeling a given set and appears as
a subtask in some tasks such as data clustering
(Fu, 1982). Moreover, most recent works in com-
puter vision compare images using measures of
similarity that are complex and non-metric, since
they do not obey the triangle inequality (Jacobs
et al., 2000). This can occur because the triangle
inequality is difficult to enforce in complex
matching algorithms that are statically robust.
Also, when matching probability distributions, the
Kullback—Leibler measure of cross entropy is
used, which is asymmetric and does not obey the
triangle inequality.

Therefore, it is interesting to develop fast tech-
niques to find the median of a set of points in non-
metric spaces. Moreover, often it is either enough
to have an approximate median, or the median is
needed in problems that are solved with approxi-
mate methods and, therefore calculating an exact
median instead of an approximate one may not be
worth the effort.

A related definition is the generalized median
that arises when the search is not constrained to
the point set, but extended to the whole space
where the points are extracted. Finding the gen-

eralized median is a more difficult task that
requires complex and specific algorithms (Cas-
acuberta and de Antonio, 1997).

In this paper an approximate general search
algorithm for nonmetric spaces is presented. This
algorithm does not make any assumption about
the structure of the points or about the distance
function and has a linear time complexity. An easy
modification is also presented to avoid duplicate
distance computation when the distance is sym-
metric.

The algorithm can also be used for the vector
median computation. As discussed only in the case
that the distance is L, there is a faster algorithm,
Barni et al. (1992).

2. The approximate median search algorithm

The idea of the algorithm is simple: instead of
computing the sum of each point to all the other
points to select the point that minimizes this sum,
only a subset of all the points is used to obtain an
estimation of this sum. Obviously, the larger this
subset is, the lower the error interval of the sum
estimation will be. The algorithm first calculates
such estimation and then calculates the exact dis-
tance sum for the points that have a lower distance
sum estimation.

The algorithm works in two main steps. In the
first step a random subset of #, points is selected
(reference points), and, for each point, the sum of
distances from the point to the reference points is
calculated and stored (partial sum). In the second
step, the n, points (fest points) whose partial sum is
lowest are selected and, for each of those points,
the sum of distances from the point to the re-
maining points is calculated and stored (full sum).
The point that minimizes the full sum is selected as
the approximate median. Obviously, if the distance
is symmetric, as the full sum is also known for the
reference points, these points are also taken into
account at the time of selecting the best approxi-
mate median. The algorithm, with some tricks to
avoid the double distance computation when the
distance is symmetric, can be seen in Fig. 1.

It is easy to see that the time complexity of the
algorithm is O(n,|P|), where n, is the number of
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algorithm approximate median
input:
P : set of points
d(-,) : distance function
n, : number of reference points
ng : number of test points
output:
m € P : median
var:
U : used points (reference and test)
T : test points
PS : array of |P| partial sums
FS : array of |P| full sums
// Initialization
U=10
Vp e P
PS[p]=0

// Selecting the reference points
repeat n, times
u = random point in P — U
U=UU{u}
FS[u] = PS[u]
Vpe P
d=d(p,u)
PS[p| = PSlpl+d
FSu] = FSu]+d
// Selecting the test points

T = n, points in P — U that minimize PS[]

// Calculating the full sums
VieT

FS[t] = PS[t]

U=UU({t}

Vpe P—-U
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d=d(t,p)
FS[t] = FS[t] +d
PS[p] = PS[p] +d

// Selecting the median
m = the point in U that minimizes F'S[]
end algorithm

Fig. 1. The approximate median algorithm.

used points (n, = n, + ny) and |P| the number of
data points, instead of O(|P|*) for the exact algo-
rithm. However, the space complexity is O(|P])
instead of O(1).

The algorithm has two parameters, the number
of reference points (n;) and the number of test
points (n;). In the experiment section it is shown
that the choice n, = n; seems reasonable and that
with a small number of used points very good
median candidates can be obtained.

One might think that the test points could be
selected incrementally. Then, as each time that a
test point is selected the partial sum of the re-
maining points is updated, this information can
be used (at no cost) to select the next test point.
One expects that the more information is used in
order to select the test points, the more accurate
medians will be obtained. The only change nee-
ded in the algorithm is to change the code in
sections “‘Selecting the test points” and “Calcu-
lating the full sums” for the code shown in
Fig. 2.

Anyway, this is not a good idea (as it is shown
in Section 3) because the mission of the reference
points is to represent the whole set of points and is
expected that the reference points have a similar
behavior, as a predictor of the median, as that of
the whole set. If more points, not randomly se-
lected, are used they are going to produce a bias
and worse results will result.

3. Experiments

In order to show the behavior of the proposed
algorithm a set of experiments was prepared with
both synthetic and real data. The synthetic data
were extracted from a uniform distribution in the
unit cube for different dimensionalities and the
Euclidean distance was used. In these experiments
the algorithm for symmetric distances was used.
The real data were a chain code (Fu, 1982; The-
doridis and Koutroumbas, 1999) description of a
fraction of the handwritten digits (10 writers) of
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// Selecting test points and calculating their full sums

repeat

t = the point in P — U that minimizes PS]|

FS[t] = PS[t]
U=UU{t}
Vpe P—-U
d=d(t,p)
FS[t] = FS[t]+d
PS[p| = PS[p] +d
until |U| == n, + n,

Fig. 2. A section of the bad algorithm.

the NIST Special Database 3 (National Institute of
Standards and Technology). The edit distance (Fu,
1982) with deletion, insertion and substitution er-
rors equal to 1, 1.5 and 2, respectively, was used in
order to make the distance non-symmetric and
therefore non-metric.

To measure the adequacy of the approximate
median, the normalized difference between the sum
of distances from the exact median and the sum of
distances from the approximate median was used.
That is, if P is the set of data points, d(-,-) is the
distance function, m, is an exact median (the me-
dian has not to be unique) and m, is the approxi-
mate median, the sum error e of the approximate
median is measured as

e — ZpGP d(maap) - ZpGP d(me,p)
ZPEP d(me, p) ‘

As the exact median minimizes the sum of dis-
tances then the sum error is always positive and is
zero if and only if the approximate median is ex-
act.

The first set of experiments was designed to
study the behavior of the sum error as the size of
the used points increases. In these experiments the
number of reference points was set equal to the
number of test points. Each of the experiments was
repeated 10 times using a different random choice
of reference points.

In the experiments with synthetic data, ten data
sets of 1000 points were used. The experiment was
repeated for spaces of dimensionality 6, 12 and 18.

The number of used points was increased from 5 to
60 in steps of 5. Fig. 3 shows the results. From 60
to 100 used prototypes (not shown in the plot) all
the sum errors were zero (an exact median was
found). It can be shown that using 20 points, sum
errors lower that 1% can be reached and time
savings of 98% are obtained.

It is surprising to observe that the algorithm
works better (lower sum error for the same num-
ber of used points) as the dimensionality increases.
This effect is probably due to the fact that as the
dimension increases the sum of distances from a
point to the rest becomes similar for all the points
(Bayer et al., 1999), and then it is easier to find a
point similar to the optimal.

In the experiments with handwritten digits a
similar approach was used. In this case all hand-
written digits from 10 writers were used (ranging
from 901 samples for the digit 5 to 1203 for the
digit 1). The number of used points was increased
from 5 to 95 in steps of 5. Fig. 3 shows the result
for digits 0, 1, 2 and the average for all digits. In
this case, for 95 used points sum errors of 0.03%
are obtained and with 20 used points the average
sum error is lower than 1.7%.

In order to study, for a given number of used
points, which is the best proportion of reference
points and test points a second set of experiments
was made. In these experiments three different
numbers of used points were chosen (25, 50 and
100) and the number of reference points increased
from 1 to the number of used points. Each ex-
periment was repeated 10 times using different
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Fig. 3. Sum error as the number of used points increases.

random reference points. In the experiments with
synthetic data each experiment was repeated with
ten data sets of 1000 points in a 6-dimensional
space. The experiments with handwritten digits
show the average over all the digits.

As it can be observed in Fig. 4 the plots form a
very wide valley. Then the relation between the
number of reference points and the number of test
points is not too critical and making both pa-
rameters equal seems a reasonable option.

Two sets of experiments were made in order to
study the dependence of the sum error, for a fixed
number of used points, on the number of data
points. In these experiments, two different num-
bers of used points were chosen (25 and 50) and
n, = n, was set. The number of points increased

Uniform distribution
dimensionality 6

0.1 . ' .
i 100 used points ~—=—
it 50 used points =+~

0.08 - 25 used points -+ |

0 0.2

0.4 0.6
reference points / used points

0.8 1

sum error

(b)

from 50 to 900 in steps of 50 and each experiment
was repeated 10 times using different random ref-
erence points. The experiments with synthetic data
were repeated for 10 random data sets of points in
a 6-dimensional space. The experiments with
handwritten digits were repeated 10 times for dif-
ferent random subset of the total number of data
points. The plot shows the average for all the
digits.

As can be seen in Fig. 5 the sum error grows
very slowly with the data point set size. This
growth is slower as the number of used points
increases.

This last experiment was repeated in order to
compare the expended time of the “brute force”
algorithm and our algorithms (Fig. 6). This time

Handwritten digits
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reference points / used points
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Fig. 4. Sum error for 100, 50 and 25 used points, when the proportion of reference points change from 0 to 1.
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Fig. 6. Comparison of the expended time with the brute force algorithm.

no repetitions were made because the time ex-
pended does not depend of the values of the dis-
tances. The handwritten digit experiment was
made only with the data for the “0” digit. The
times where measured in a Pentium MMX running
at 200 MHz under a Linux system. As was ex-
pected the algorithm proves to be linear and faster
than the “brute force” even for small point set
sizes.

In order to compare the good and bad algo-
rithms mentioned in Section 2, Fig. 7 shows the
result of experiments (synthetic data in a 6-
dimensional space) made in the same way as that
of the first set of experiments of this section. In
both cases it can be observed that the incremental
use of test points as reference points slightly in-
creases the sum error.

Uniform distribution
dimensionality 6
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used points

Fig. 7. Sum error of the wrong and correct algorithms as the
number of used points increases.
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4. Conclusions

In this work an effective fast approximate
median computation algorithm is presented. The
algorithm makes no assumptions on the used
distance and therefore it can be used on non-
metric spaces. An improvement of the algorithm
for symmetric distances is also presented.

The algorithm has two parameters, the number
of reference points (n;) and the number of test
points (n;). The complexity of the algorithm is
O(ny|P|) where n, (used points) is the sum of both
parameters and P is the set of points. The experi-
ments (with synthetic and real data) show that
very approximate medians can be obtained with a
small number of used points and that the error
depends very weakly on the number of the used
points. This makes the algorithm linear in practical
situations.

The experiments also show that setting both
parameters to equal values is a reasonable choice
and that its behavior does not degrade as the
dimensionality of the data increases.
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